MIR-SAT1

Satellite technology has come a long way since the launch of Sputnik 1 in 1957. Since then, advances in technology have made satellites much more accessible, leading to thousands of artificial satellites orbiting the earth today. Satellites have become an important part of our everyday life, facilitating telecommunications, weather forecasting, oceanographic explorations, among others. Furthermore, Satellite/Space Technology has led to major advancements in a number of fields including medicine, agriculture, astronomy and surveillance, amongst others. Mauritius, as a SIDS, currently benefits from numerous services provided by satellites.

3DCubesat

The Mauritius Research and Innovation Council (MRIC), operating under the aegis of the Ministry of Technology Communication and Innovation and mandated by the Government of Mauritius to promote Science Research, Technology and Innovation in the Republic of Mauritius, envisages embarking into a new initiative geared towards exploring the potential of space/satellite technology for the socio-economic benefit of the Country. As a first attempt towards this aim, a team led by the MRIC submitted a proposal entitled the MIR-SAT1 under the United Nations Office for Outer Space Affairs (UNOOSA) and the Japan Aerospace Exploration Agency (JAXA) KiboCUBE Programme 2018. The UNOOSA/JAXA KiboCube Program provides developing countries opportunities to embark into space activities with an ultimate objective to build national capacity in space technology.

The Mauritian proposal MIR-SAT1 was retained by the JAXA/UNOOSA as the best submission from a developing country in June 2018 and consequently Mauritius has been offered the opportunity, for the first time in its history, to build and deploy a Mauritian NanoSatellite (1U CubeSat) from the International Space Station (ISS) Japanese Experiment Module (Kibo) on a Low Earth Orbit (~410-420km). The MRIC also benefited from the collaboration of AAC-Clyde (UK), expert in nanosatellite technologies. The MIR-SAT1 will collect images of the Republic of Mauritius and its Exclusive Economic Zone (EEZ) using an onboard camera.

The data from the satellite will be collected by a main ground station at the MRIC. Secondary receiving ground stations are planned to be built by university students and schools at later stages. Data collected from the satellite will be used for capacity building, advanced research and innovation in areas pertinent to national problems. The deployment in space for the first Mauritian CubeSat is to be confirmed by JAXA. This will be done by JAXA via the KIBO arm of the International Space Station.

The MRIC organized a full day workshop on the 1st of March 2019 at the Conference Hall Level 1 of the Atul Bihari Vajpayee Tower (CyberTower 1) to disseminate the MIR-SAT1 initiative to the public, in particular, how it will be built and deployed in space and how data will be captured from the satellite.

Satellite Launch, Deployment & Orbit

Place your mouse over each of the marked items for more information.

  • Once completed, the satellite will be delivered to JAXA.
  • JAXA will carry out a final inspection before shipping it to the launcher (to be determined by JAXA).
  • The launcher will transport the satellite to the ISS for deployment. Deployment of satellite on orbit usually takes places between 1 to 2 months after launch.
  • Potential launchers are SpaceX Dragon or Cygnus.

Team

Dr Vickram Bissonauth

Project Coordinator

Dr Vickram Bissonauth
Mr Faraaz Shamutally

Principal Investigator

faraaz
Mr Ziyaad Soreefan

Co-Investigator

Mr Ziyaad Soreefan
Mr Jean Marc Momple

Radio Amateur Collaborator

Mr Jean Marc Momple
Mr Koushul Narrain

Ground Station setup and Outreach

Mr Koushul Narrain
Mr Kiran Tatoree

LEO Antenna Training Programme

KT
Ms Siddhee Bhojoo

Project Support

Mr Pawan Hurnath

Antenna Support Design

SatProg

Current Project Phase

This section shows the current phase of the satellite and ground station implementation.

Legend
GndProg

The Ground Control Station

The MIR-SAT1 (Mauritius Imagery and Radiocommunication SATellite 1) project involves the operation of the satellite once deployed on orbit for control and manoeuvre, collection of payload data and tests. Mission operation will be carried out via the Ground Station Facility (bearing Radio Amateur licence 3B8MRC) which is located on the 6th floor of the Ebène Heights Building in Ebene.

The ground segment consists of all the ground-based elements of the spacecraft system used by the MRIC as operator. The primary elements of the ground segment are:

  • Ground station, which provides radio interfaces with the spacecraft
  • Mission control (or operations), from which the spacecraft is managed
  • Ground networks, which connect the other ground elements (other satellite receiving stations) to one another
  • Spacecraft integration and test facilities, i.e. Missions Lab (via FlatSat in Clean Compartment)
  • Future mission design facilities (using Missions Lab)

The ground station equipment includes 1) an antenna system on the roof , and 2) hardware in the control room for reception and transmission of radio signals from and to spacecraft.

About

The ground station will autonomously track the satellite and point the antennas accordingly during a pass.

The antenna system consists of:

  • a VHF yagi antenna,
  • a UHF yagi antenna,
  • a 3-meter diameter S-Band dish,
  • 2-axis rotator,
  • and other accessories.

The antenna system is supported by a lattice structure which has already been erected on site.

The Satellite

The MIR-SAT1 (Mauritius Imagery and Radiocommunication SATellite 1) consists of two (2) payloads.

MIRSAT dimension

The Satellite

In order to ensure mission success and most importantly safety of the International Space Station, the satellite has to pass a series of tests before being accepted on board the rocket launcher and ultimately ISS.

A satellite is normally subjected to harsh environmental conditions during the launch phase, deployment phase and finally on orbit around the Earth. These tests simulate these conditions and ensure the satellite is properly designed to operate during these phases.

MIR-SAT1

Reportage

 

spacemauritius

FREE
VIEW